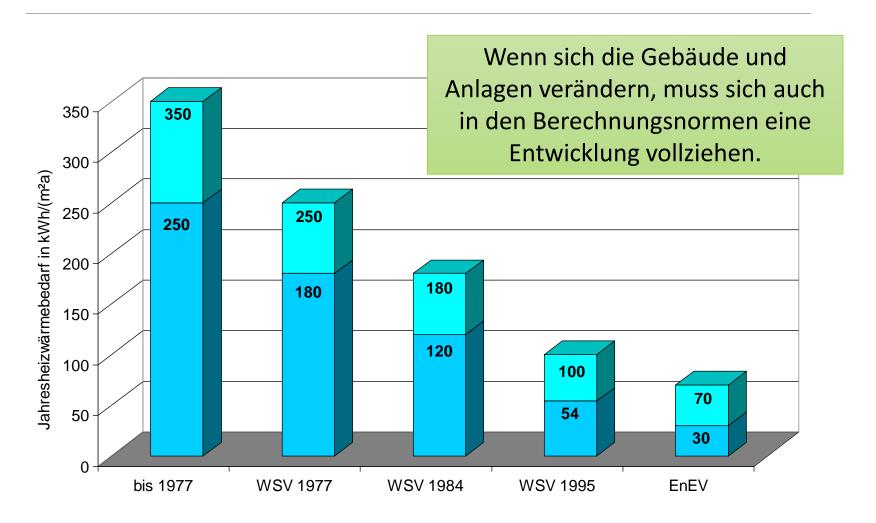
Änderungen der neuen Heizlastnorm DIN EN 12831 und DIN/TS 12831-1

REHAU 2020



Prof. Dr.-Ing. Bert Oschatz 08.12.2020

INHALT

- Einleitung
- Grundzüge der Heizlastberechnung
- Änderungen in der neuen DIN EN 12831-1:2017 und DIN/TS 12831-1:2020 gegenüber dem bisherigen Stand der Heizlastberechnung
 - PLZ-scharfe Klimadaten
 - Höhenkorrektur der Norm-Außentemperatur
 - Komfortzuschlag für Auslegungsinnentemperaturen
 - Neue Werte für pauschale Wärmebrückenzuschläge
 - Überarbeitetes Berechnungsverfahren für Norm-Lüftungswärmeverluste incl.
 Berechnungsalgorithmus für Außenluftvolumenstrom durch große Öffnungen
 - Berücksichtigung des Einflusses des Wärmeübergabesystems in hohen Räumen
- > Fazit

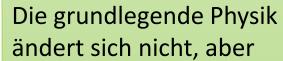
Randbedingung für die Heizungstechnik-Wärmeschutz von Neubauten in Deutschland

Entwicklung der Normen zur Berechnung der Heizlast

DIN 4701, Ausgaben 1929 ... 1959

DIN 4701 T1 und T2, Ausgabe 1983

DIN 4701 T3 (Heizflächen) 1989


E- DIN 4701 T1 u. T2, Entwurf 1995

DIN EN 12831, Ausgabe 2003

DIN EN 12831, Ausgabe 2017

- Berechnungsgang
- Formelzeichen
- Begriffehaben sich im Laufe derZeit verändert.

Nationaler Anhang, Beiblatt 1

von:

April 2004

Juli 2008

Nationaler Anhang:

ntwurf DIN SPEC 12831-1:2018-10

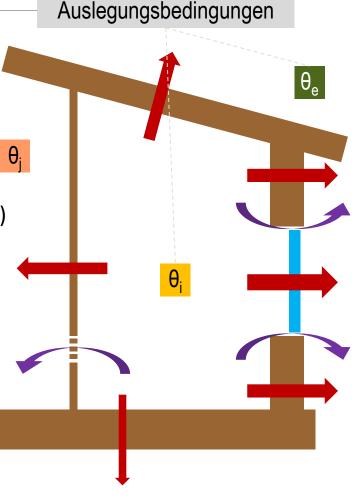
DIN/TS 12831-1:2020-04

Neue DIN EN 12831-1

DIN EN 12831-1 von September 2017
Energetische Bewertung von Gebäuden –
Verfahren zur Berechnung der Norm-Heizlast –
Teil 1: Raumheizlast, Modul M3-3;
Deutsche Fassung EN 12831-1:2017

- ➤ Diese Norm ersetzt zusammen mit dem nationalen Anhang DIN/TS 12831-1:2020 folgende bisherige Normen
 - DIN EN 12831: 2003-08
 - DIN EN 12831 Bbl 1:2008-07 (Nationaler Anhang)
 - DIN EN 12831 Bbl. 2:2012 (Vereinfachtes Verfahren Gebäude-Heizlast)
 - DIN EN 12831 Bbl. 3:2014 (Vereinfachtes Verfahren Raum-Heizlast)
 - E DIN SPEC 12831-1:2018-10

Nationaler Anhang NA für Deutschland



Nationaler Anhang NA zwingend erforderlich zur Durchführung einer sinnvollen Berechnung für Deutschland. Er enthält u.a. Klimadaten, Norm-Innentemperaturen, eine Beispielrechnung und Formblätter.

DIN EN 12831-1:2017 und DIN/TS 12831-1 sind die geltenden Regeln der **Technik zur Heizlastberechnung**

Allgemeiner Ansatz - Vereinfachte Wärmebilanz im stationären Zustand

- Raum (i)
 - Transmissionswärmeverluste
 - nach außen
 - zu benachbarten Räumen (unbeheizt oder mit unterschiedlichen Temperaturen beheizt)
 - an das Erdreich
 - Lüftungswärmeverluste
 - Infiltration (Luftdichtheit)
 - Lüftung (freie Lüftung und / oder ventilatorgestützt)
 - (Große Öffnungen)
- → Heizlast → Dimensionierung des Wärmeabgabesystems (Heizkörper etc.)

Allgemeiner Ansatz

Zone (z)

- Lüftungswärmeverluste → Zwischenergebnisse zur Berechnung der Lüftungswärmeverluste des Gebäudes
 - Infiltration (Luftdichtheit)
 - Lüftung (freie Lüftung und / oder ventilatorgestützt)

Gebäude

- Transmissionswärmeverluste
 - nach außen / gegen Erdreich (Wärmeübertragung zwischen Räumen vernachlässigt)
- Lüftungswärmeverluste (basierend auf Zonenergebnissen)
 - Infiltration (Luftdichtheit)
 - Lüftung (freie Lüftung und / oder ventilatorgestützt)
- Heizlast → Dimensionierung von Wärmeerzeugern (Heizkessel etc.)

8

Neue Heizlastnorm DIN EN 12831-1 Berechnungsverfahren

3 Rechenverfahren

- Standard-Rechenverfahren (ausführlich, Abschnitt 6) für alle Gebäude mit stationärer Beheizung
- Vereinfachtes Verfahren (Abschnitt 7)
 zur Berechnung der Norm-Heizlast eines beheizten Raums (Einzelräume) – anwendbar nur für Wohngebäude im Gebäudebestand
- Vereinfachtes Verfahren (Abschnitt 8)
 für die Berechnung der Norm-Heizlast des Gebäudes – anwendbar nur für Wohngebäude im Gebäudebestand

z.B.
Wohngebäude
Büro- und
Verwaltungsgebäude
Schulen
Krankenhäuser
Hotels
Industriegebäude

•••

Inhaltliche Änderungen gegenüber DIN EN 12831:2003-08 (incl. NA)

- Neue Klimadaten
- Überarbeitete/neue Formblätter
- Umfassend überarbeitetes Berechnungsverfahren für Norm-Lüftungsverluste
- Korrektur der Auslegungsaußentemperatur
 - Einfluss von Höhenunterschieden (darf im vereinfachten Verfahren vernachlässigt werden)
 - Einfluss der Zeitkonstante des Gebäudes (optional)
- Bessere Berücksichtigung der Besonderheiten von Hallengebäuden
- Neues Berechnungsalgorithmus für Außenluftvolumenstrom durch große Öffnungen ⇒ Hallengebäude
- Überarbeitetes Verbrauchsverfahren zur Schätzung der Heizlast aus Wärmemengen oder Verbrauchsdaten
- **>** ...

Ortsliste DIN EN 12831 Beiblatt 1:2008-07

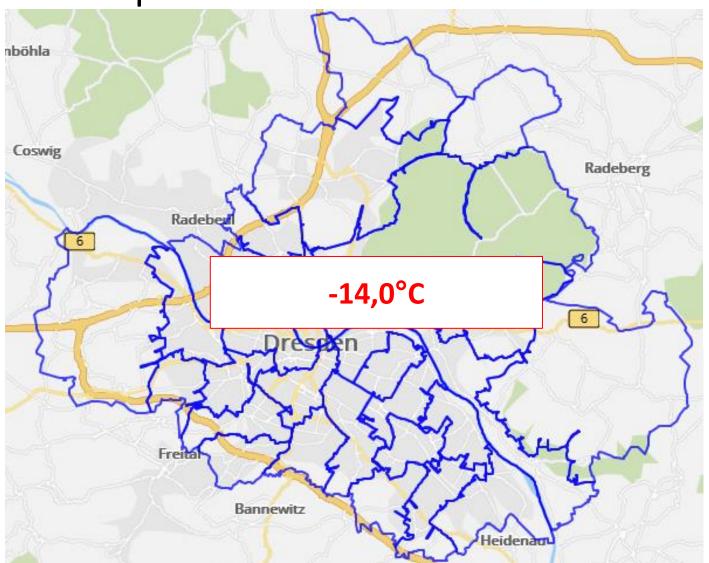
- Klimadaten für deutsche Städte mit mehr als 20.000 Einwohnern
- Zuordnung nach Ortsnamen
- > ca. 500 Einträge, gedruckt in Nationalen Anhang der Norm

Tabelle 1 — Norm-Außentemperaturen für deutsche Städte mit mehr als 20 000 Einwohnern

Ort	PLZ	Klimazonen nach DIN 4710	Außentemperatur $ heta_{ m e}'$	Jahresmittel der Außentemperatur $\theta_{ m m,e}'$
			°C	°C
Aach, Hegau	78267	11	–14	3,0
Aachen	52062*	5	–12	8,1
Aalen, Württ.	73430*	13	–16	7,9
Ahlen, Westf.	59227*	5	–12	8,1
Ahrensberg	38707	3	–12	8,5
Altena, Westf.	58762	6	–12	6,8
Alzey	55232	6	–12	6,8
Amberg, Oberpf.	92224	13	– 16	7,9
Andernach	56626	7	–12	8,8
Anklam	17389	4	–12	9,5
Annaberg-Buchholz	09456	11	–16	3,0
Ansbach, Mittelfr.	91522	13	–16	7,9

Neu in DIN/TS 12831-1: PLZ-scharfe Klimadaten

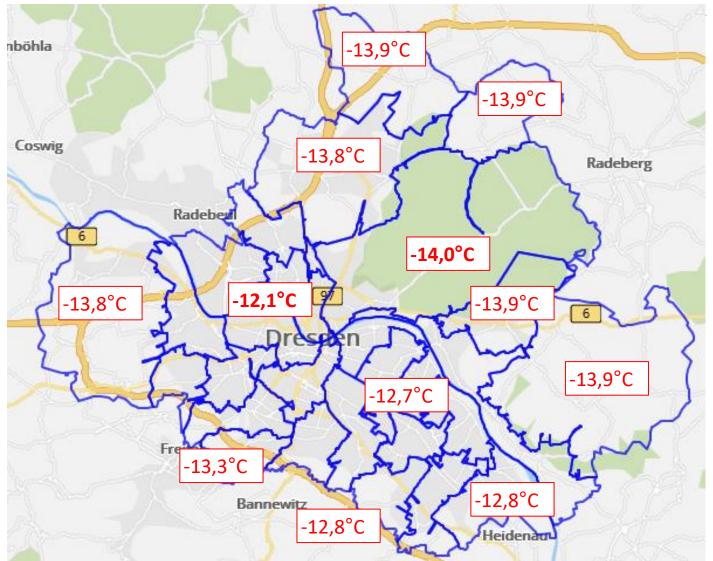
- Klimadaten für jeden PLZ-Bereich (Orte)
- Zuordnung nach PLZ
- > 8.199 Einträge, excelbasiert, elektronischer Anhang zum NA auf CD o.ä.


	Referenzort	Auslegungsauß entemperatur ²	Jahresmittlere Außentemperatur		alte TRY- Region	Anmerk ungen
PLZ ¹	Ort	$\theta_{e,Ref}$	$\theta_{e,m,Ref}$	h _{Ref}		
		[°C]	[°C]	[m]		
01067	Dresden	-12,3	10,5	112	4	
01069	Dresden	-12,4	10,4	115	4	
01097	Dresden	-12,1	10,9	115	4	
01099	Dresden	-14	9,3	253	4	
01108	Dresden	-13,9	9,5	216	9	

L	1	·	=	<u> </u>		4
99991	Großengottern, Heroldishausen	-12,7	9,4	180	7	
99994	Schlotheim	-13,3	9	250	7	
99996	Menteroda, Obermehler	-13,3	8,5	337	7	
99998	Körner, Weinbergen	-12,9	9,2	221	7	

Neu in DIN/TS 12831-1: PLZ-scharfe Klimadaten

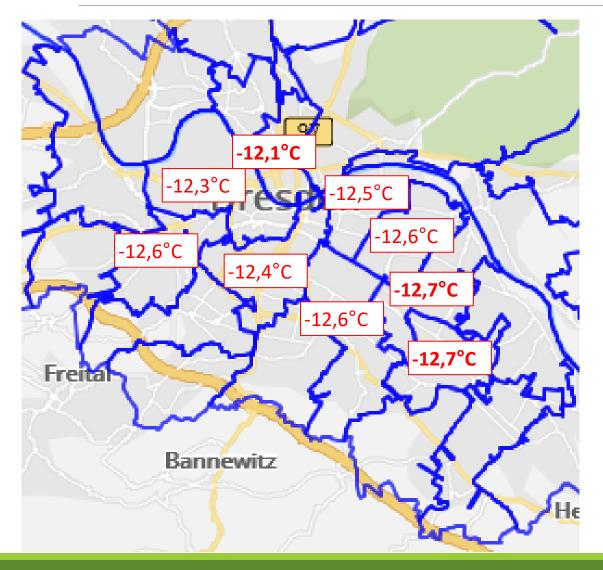
Vorteile **Nachteile** i.d.R. sehr feine geografische Unterteilung → Vergleichsweise viele Daten→ kaum keine oder nur kleine Sprünge an sinnvoll in Papierform zu veröffentlichen, Gebietsgrenzen elektronischer Anhang jedoch kein Problem Nahezu jeder reale Standort kann eindeutig PLZ-Gebiete ebenfalls unterschiedlich groß zugeordnet werden, sofern PLZ verfügbar und z.T. ohne Bezug zu klimatischen Gegebenheiten; durch deutlich detailliertere Wetterdaten unkompliziert in Software zur geografische Unterteilung (PLZ-Gebiete) Heizlastberechnung integrierbar jedoch weniger kritisch und zusätzlich durch höhenabhängige Klimakorrektur kompensierbar Abkehr von eingeführter Art der Darstellung


Alte Auslegungsaußentemperatur Beispiel Dresden

Einheitlich für gesamtes Stadtgebiet:

-14°C

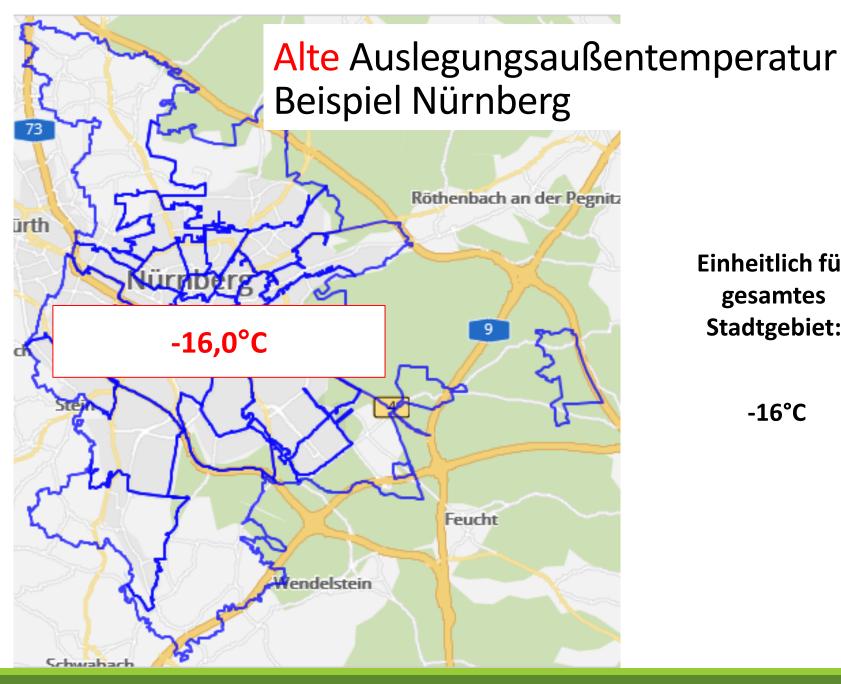
Neue Auslegungsaußentemperaturen Dresden


Je nach Stadtlage zwischen

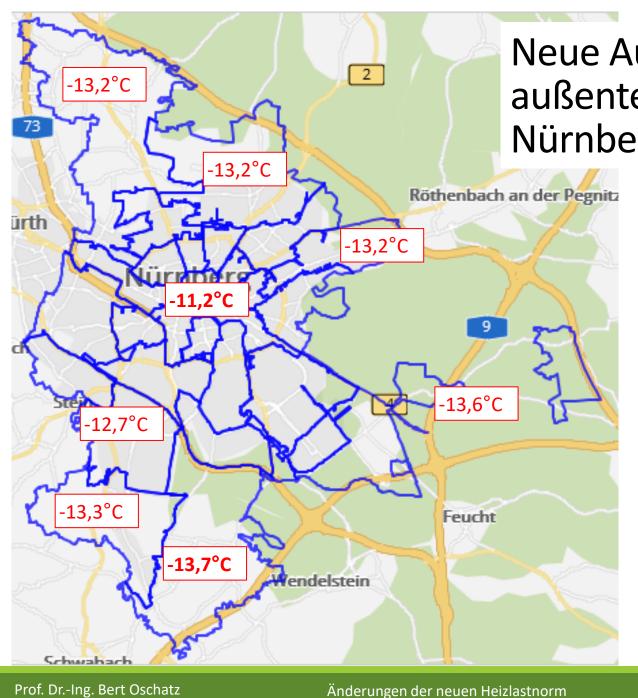
-12,1°C (Stadtkern, Neustadt)

und

-14,0°C (Stadtrand, Dresdner Heide)


Neue Auslegungsaußentemperaturen Dresden, Detail Stadtkern

In der innerstädtischen Lage liegen die Temperaturen zwischen


-12,1°C und -12,7°C

→ Berücksichtigung des Wärmeinseleffekts

Einheitlich für gesamtes **Stadtgebiet:**

-16°C

Neue Auslegungsaußentemperaturen Nürnberg

> Je nach Stadtlage zwischen

-11,2°C (Stadtkern)

und

-13,7°C (Stadtrand)

Vergleich der Auslegungstemperaturen, Beispiele

Ort	Alte Auslegungs- temperatur in °C	Neue Auslegungs- temperatur in °C
Berlin	-14,0	-13,3 bis -11,1
Hamburg	-12,0	-10,5 bis -8,2
München	-16,0	-13,9 bis -11,1
Kiel	-10,0	-8,7 bis -7,7
Leipzig	-14,0	-13,6 bis -11,6
Burghaslach	-16,0	-12,7
Dillingen, Donau	-16,0	-13,5
Garmisch-Partenkirchen	-18,0	-19,2 (2356 m ü. NHN) / -15,3 (Tal)
Oberstdorf	-20,0	-16,7
Würzburg	-12,0	-10,1 bis -11,4
Mittelwert	-13,2	-11,5

Verringerung der Heizlast bei Änderung der Außentemperatur um 1K

Alte Auslegungs- außentemperatur ϑ _e	Auslegungsinnentemperatur ϑ _{int}			
	15°C	20°C	24°C	
-10 °C	4,0%	3,3%	2,9%	
-12 °C	3,7%	3,1%	2,8%	
-14 °C	3,4%	2,9%	2,6%	
-16 °C	3,2%	2,8%	2,5%	
-18 °C	3,0%	2,6%	2,4%	
-20 °C	2,9%	2,5%	2,3%	

Höhenkorrektur der Norm-Außentemperatur

- > Berücksichtigung des Höheneinflusses auf die Auslegungsaußentemperatur möglich
- > relevant für Standorte mit unterschiedlichen Höhenprofilen
- keine Höhenkorrektur der Außentemperatur bei Höhendifferenz zwischen Gebäudestandort und Referenzhöhe von < 200 m</p>
- Höhenkorrektur im Standardverfahren, wenn Differenz zwischen
 Gebäudestandort und Referenzhöhe ≥ 200 m, dann

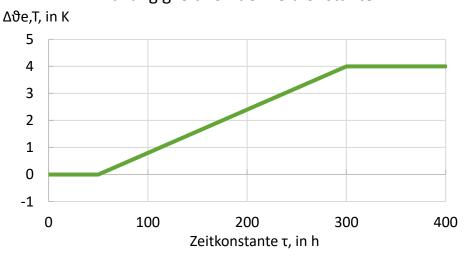
Änderungen der neuen Heizlastnorm

> Abnahme der Temperatur von 1 K pro 100 m Höhendifferenz

Höhenkorrektur der Norm-Außentemperatur

- Mittlere Auslegungstemperatur in Deutschland: -11,5°C
- ➤ Mittlere Höhe aller Datensätze h_{ref}: 273m

Höhendifferenz in m h>h _{ref}	Korrigierte Auslegungsaußen- temperatur in °C	Änderung der Heizlast bei 20°C Auslegungsinnen- temperatur
0	-11,5	+0,0%
200	-13,5	+6,3%
400	-15,5	+12,7%
600	-17,5	+19,0%
800	-19,5	+25,4%
1.000	-21,5	+31,7%


Korrektur der Norm-Außentemperatur in Abhängigkeit von der Zeitkonstante

- > optionale Berücksichtigung der Zeitkonstante bereits mit der alten Fassung der Heizlastnorm bei der Berechnung der Transmissionswärmeverluste möglich (als stufige Außentemperaturkorrektur)
- in der neuen Fassung der Norm dagegen eine stetige Korrektur mittels einer Funktion \rightarrow Erhöhung zwischen $\Delta \vartheta_{e,T}$ = 0 und $\Delta \vartheta_{e,T}$ = 4 K möglich

Änderungen der neuen Heizlastnorm

Lüftungswärmeverluste werden mit der unkorrigierten Außentemperatur ermittelt, da hier keine Dämpfung stattfindet.

Anpassung der Auslegungsaußentemperatur in Abhängigkeit von der Zeitkonstante

Norm-Innentemperaturen 2020

Standardwerte weitgehend unverändert

Rau	mart	Temperatur ϑ _{int} [°C]
Wohn- und Schlafräume		20
Büro- und Sitzungsräume, Ausstellungsräume, Flure und Treppenräume innerhalb von Nutzungseinheiten, Schalterhallen		20
Hotelzimmer		20
Verkaufsräume, Ladengeschäfte		20
Unterrichtsräume		20
Theater- und Konzerträume		20
Räume, welche unbekleidet genutzt werden (z. B. Bäder, Bade-, Dusch- und Umkleideräume, Untersuchungsräume)		24
WC-Räume	20	
Beheizte Nebenräume außerhalb von Wohnungen/Nutzungseinheiten (z. B. Hausflure und Treppenhäuser)		15
	schwerer Tätigkeit, überwiegend stehend	15
NEU: Gewerblich/industriell genutzte Räume bei	mittelschwerer Tätigkeit, überwiegend stehend	17
	leichter Tätigkeit, überwiegend sitzend	20

Norm-Innentemperaturen 2020 individuelle Vereinbarung, Komfortzuschlag

Individuelle Vereinbarung von Temperaturwerten

Vereinbarung und Dokumentation von konkreten Werten der Auslegungsinnentemperaturen zwischen AG und dem mit der Heizlastberechnung beauftragten Unternehmen

Erhöhung der Standardwerte um bis zu 3 K bei erhöhtem Wärmebedürfnis

Erhöhung (in Abstimmung mit dem AG) der Auslegungsinnentemperaturen gegenüber den Standardwerten um bis zu $\Delta_{\vartheta int,comf}$ = 3 K

(wenn von einem gegenüber den Standard-Auslegungsinnentemperaturen erhöhten Wärmebedürfnis auszugehen ist - Komfortzuschlag).

Auswirkung des Komfortzuschlags auf die Normheizlast

➤ Mittlere Auslegungsaußentemperatur in Deutschland: -11,5°C

Standardwert der Auslegungsinnen- temperatur	15°C	20°C	24°C
Auslegungsinnen- temperatur inkl. Komfortzuschlag (3K)	18°C	23°C	27°C
Änderung der Heizlast	+11,3%	+9,5%	+8,5%

Berücksichtigung von Wärmebrücken

> Vergleich der Pauschalwerte für den Wärmebrückenzuschlag

	Kriterium		Wärmebrücken- zuschlag ΔU _{WB} in W/m²K
Neue DIN/TS 12831-1:2020	Einhaltung der Planungsdetails nach E DIN 4108 Beiblatt 2:2017-11 oder	Kategorie A	0,05
		Kategorie B	0,03
	Gebäude mit vorwiegend innenliegender Wärmedämmung, welche von Massivbauteilen (z. B. Stahlbetondecke) durchstoßen wird		0,15
	Alle anderen Fälle		0,10
Bisheriger NA zur	Ohne bauseitiger Berücksichtigung von Wärmebrücken		0,10
(2008)	mit bauseitiger Ausführung der Bauteilanschlüsse nach DIN 4108 Beiblatt 2		0,05

Lüftungswärmeverluste in DIN EN 12831-1

- Zwei Ansätze zur Berechnung der Norm-Lüftungsverluste
 - Allgemeines Berechnungsmodell
 - Vereinfachtes Verfahren

Allgemeines Berechnungsmodell:

Berechnung der Norm-Wärmeverluste einschließlich der Optionen für die am weitesten verbreiteten Lüftungskonzepte und -systeme, wie

- freie Lüftung und keine ventilatorgestützte Lüftung,
- abgeglichene und unausgeglichene Lüftung,
- zusätzlicher Luftvolumenstrom (z. B. Verbrennungsluft),

Änderungen der neuen Heizlastnorm

Wärmerückgewinnung usw.

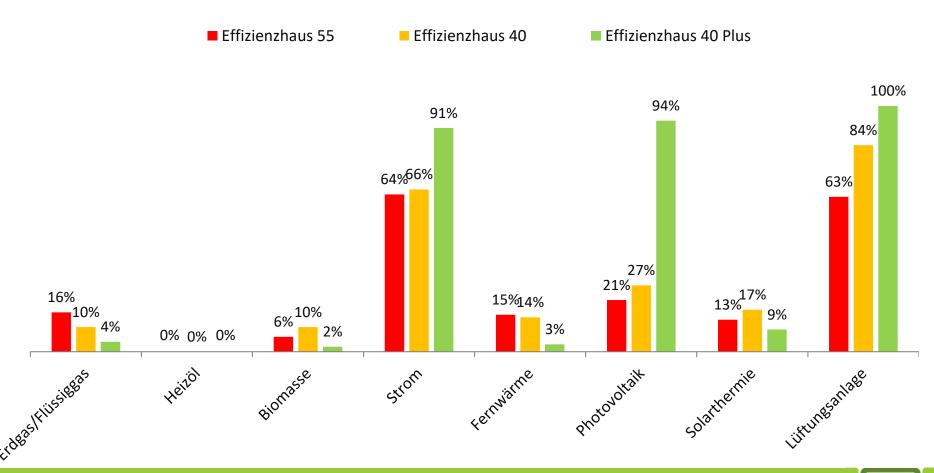
Vereinfachtes Verfahren zur Berechnung der Normlüftungsverluste

- Kann angewendet werden, wenn:
 - luftdichte Bauweise mit n₅₀≤3h⁻¹ und
 - keine Außenluftdurchlässe,
 - keine ventilatorgestützte/maschinelle Lüftung,
 - keine Wärmerückgewinnung,
 - keine großen Öffnungen in der Gebäudehülle.

- Berechnungsansatz
 - Mindestluftwechsel f

 ür R

 äume
 - Mindestluftwechsel für Gebäude/Zonen


Änderungen der neuen Heizlastnorm

 $n=0.5h^{-1}$

 $n=0,25h^{-1}$

Wärmeversorgungsstruktur verschiedener Neubaustandards 2017

Quelle: IWU Darmstadt/Fraunhofer IFAM: Monitoring der KfW-Programme "Energieeffizient Sanieren" und "Energieeffizient Bauen" 2017 (Auswertung von Stichproben)

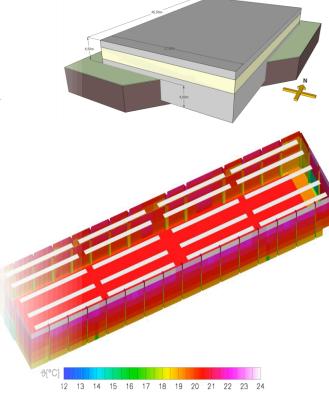
Änderungen der neuen Heizlastnorm

30

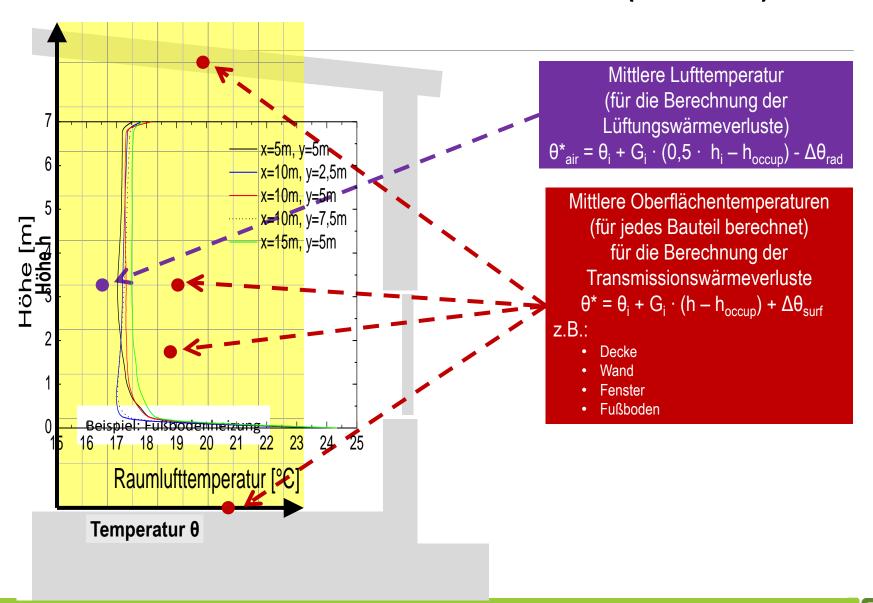
Allgemeines Verfahren zur Berechnung der Normlüftungsverluste

- Erforderlich wenn, eines der Kriterien vorkommt:
 - Undichte Bauweise mit $n_{50} > 3h^{-1}$
 - Außenluftdurchlässe
 - Maschinelle/ventilatorgestützte Lüftung
 - Wärmerückgewinnung
 - Große Öffnungen in der Gebäudehülle

Formel für raumweise Berechnung


$$\begin{aligned} \text{Beheizter} \\ \text{Raum(i):} \qquad & \Phi_{\text{V},i} = \rho \cdot c_p \cdot \begin{pmatrix} \max \langle q_{\text{v,env},i} + q_{\text{v,open},i}; q_{\text{v,min},i} - q_{\text{v,techn},i} \rangle \cdot \left(\theta_{\text{int},i}^* - \theta_e\right) \\ & + q_{\text{v,sup},i} \cdot \left(\theta_{\text{int},i}^* - \theta_{\text{rec},z}\right) \\ & + q_{\text{v,transfer},ij} \cdot \left(\theta_{\text{int},i}^* - \theta_{\text{transfer},ij}\right) \\ \end{aligned} \end{aligned}$$

Sonderfall: Berücksichtigung großer Öffnungen in der Gebäudehülle

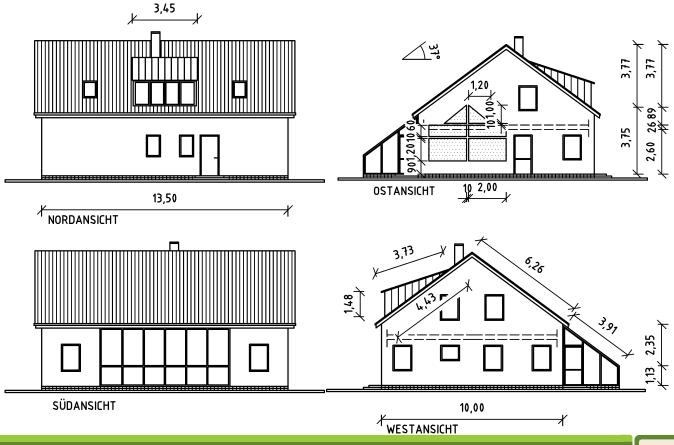

- > Berechnung der Heizlast mit Berücksichtigung großer Öffnungen in der Gebäudehülle im Auslegungsfall
- optional: nur wenn das Offenhalten großer Öffnungen unter Auslegungsbedingungen nicht vermieden werden kann und vom AG erwünscht
- > z.B. bei Toren in beheizten Hallengebäuden
 - → Wesentlich höhere Heizlast bei optionaler Berücksichtigung großer Öffnungen im Auslegungsfall

Besonderheiten von hohen Räumen (h > 4 m)

- Signifikanter Einfluss des Wärmeabgabesystems in hohen Räumen
 - Temperaturgradient über Höhe
 - Unterschied zwischen operativen, Oberflächen- und Lufttemperaturen
- Wärmeverlustberechnung basierend auf mittleren / effektiven Temperaturen
 - Mittlere Lufttemperatur → Lüftungswärmeverluste
 - Mittlere Oberflächentemperaturen → Transmissionswärmeverluste
- Mittlere / effektive Temperaturen abhängig von:
 - Auslegungsinnentemperatur
 - Eigenschaften des Wärmeübergabesystems

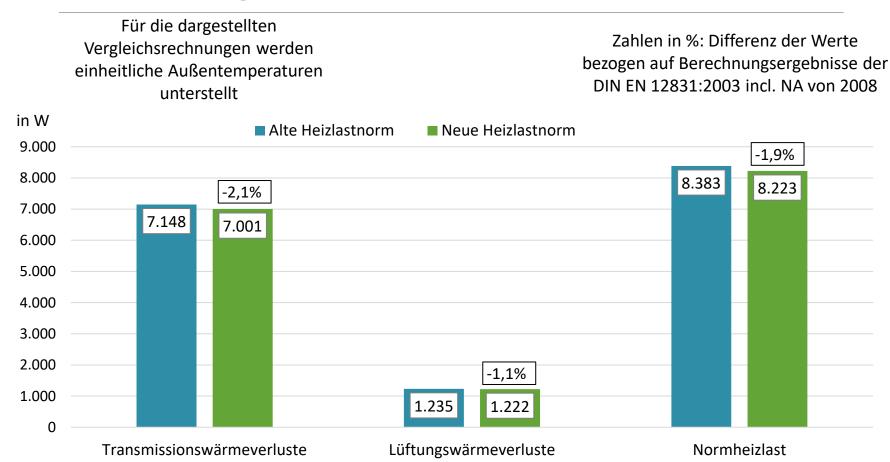
Besonderheiten von hohen Räumen (h > 4 m)

Hohe Räume (h > 4 m)


Parameter der Wärmeübergabe

Wärmeübergabesystem	Lufttemperatur- gradient	Unterschied zwischen Lufttemperatur und operativer Temperatur	Korrekturterm für den Einfluss des Wärme- übergabesystems auf Oberflächentemperaturen
	$G_{\vartheta {\sf air}, i}$, in K/m	$\Delta heta_{\sf rad}$, in K	$\Delta heta_{ m surf}$, in K
Luftheizung ohne Warmluftrückführung (z.B. Deckenventilatoren)	1,00	0,00	0,00
Luftheizung mit zusätzlicher Warmluftrückführung (z. B. Deckenventilatoren)	0,35	0,00	0,00
Deckenstrahlplatten	0,35	1,50	0,00
Dunkelstrahler	0,20	1,50	0,00
Hellstrahler	0,20	1,50	0,00
bauteilintegrierte Flächenheizung	0,20	1,50	1,50
Heizkörper/Radiatoren	1,00	0,00	0,00

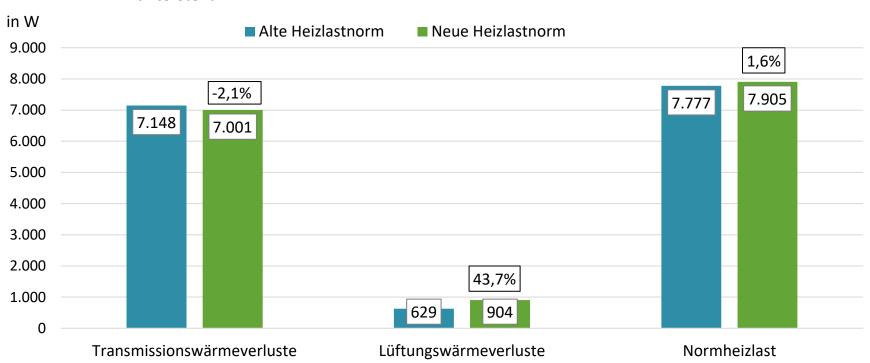
Auswirkungen der neuen Heizlastnorm - Zahlenbeispiele


Änderungen der neuen Heizlastnorm

Vergleich der Berechnungsergebnisse der alten und neuen Heizlastnorm für ein Beispiel-EFH

Vergleich der Berechnungsergebnisse

Freie Lüftung, (ohne ALD), Gebäudeheizlast



Geringfügige Abweichung der Normheizlast → kaum Änderung für die Auslegung des Wärmeerzeugers im kleinen Leistungsbereich

Vergleich der Berechnungsergebnisse Zu-/Abluftanlage mit WRG, Gebäudeheizlast

Zahlen in %: Differenz der Werte bezogen auf Berechnungsergebnisse der DIN EN 12831:2003 incl. NA von 2008

Geringfügige Abweichung der Normheizlast→ kaum Änderung für die Auslegung des Wärmeerzeugers im kleinen Leistungsbereich

Änderungen der neuen Heizlastnorm

38

Fazit: Heizlastberechnung mit DIN EN 12831-1

- Eindeutige und einfachere Zuordnung realer Standorte durch PLZ-scharfe Klimadaten
- Einfachere Berechnung der Lüftungswärmeverluste für Räume mit Infiltration (ohne ALD)
- Bewertung von ALD möglich
- Berücksichtigung von Abtauvorgängen bei Zu-/Abluftanlagen mit WRG möglich
- Optionale Berechnung der Lüftungswärmeverluste durch das Offenhalten großer Öffnungen im Auslegungsfall
- Einbeziehung des Wärmeübergabesystems in die Berechnung für hohe Räume

Fazit: Heizlastberechnung mit DIN EN 12831-1

- Grundsätzlich: Abweichungen durch neue Klimadaten und die Zuordnung zu PLZ möglich
- > Auswirkungen auf Auslegung von Heizflächen/Wärmeerzeugern im Wohngebäudebereich
 - mit freier Lüftung ohne ALD: kaum Veränderungen
 - mit Zu-/Abluftanlage: zum Teil abweichende Leistungen durch z.B. Berücksichtigung der Abtauvorgänge (falls erforderlich) \rightarrow höhere Heizlast
- Auswirkungen auf Auslegung von Heizflächen/Wärmeerzeugern im Nichtwohngebäudebereich (z.B. Hallen)
 - Realistische bzw. an das Wärmeübergabesystem abgestimmte Heizlast in hohen Räumen
 - Wesentlich höhere Heizlast bei optionaler Berücksichtigung großer Öffnungen im Auslegungsfall (seltener Sonderfall!)

Vielen Dank für Ihre Aufmerksamkeit!

Institut für Technische Gebäudeausrüstung Dresden

Forschung und Anwendung GmbH Tiergartenstr. 54, 01219 Dresden Tel.: + 49 351 4692 54-70

Tel.: + 49 351 4692 54-70
Fax: + 49 351 4692 54-79
E-mail: info@itg-dresden.de
Internet: http://www.itg-dresden.de

